

 1

Deep Reinforcement Learning for Autonomous Racing Track Agent (Project Cars 2™)

Michael Hatchi
mhatchi@vrona.io

Human + Machine
#UnitedByRacingSkills

initial release: 01/08/2020 - update: 02/01/2020

Abstract

Contextually, autonomous vehicle is a hot topic for years. The future of racing is a related topic
on which mainly car manufacturers are trying to anticipate guided by software, energetic and
safety developments.
Even though full autonomous technology is not yet widely accepted by day to day drivers around
the world, motor sports field acts as a full-scale lab and makes the advent of self-car driving even
closer.
Indeed, the launch in 2019 of Roborace Season Alpha sets autonomous racing standard and is
a remarkable achievement.

Technically, reinforcement learning enables engineers to develop machines that could learn on
their own within a relatively simple deterministic space. Thus, for more complex state and action
spaces the combination of deep learning with reinforcement learning is required as the nature of
spaces changes to continuous.
On 2015/2016, a team from Google has published the Deep deterministic policy gradient (DDPG)
[1] algorithm. Starting from it, DDPG algorithm and some of its variants, has helped to solve highly
complex problems in continuous spaces.

VRONA® BOT88 is a self-driving car project that leans toward building an autonomous racing driver

model based on plain input vision (no lane and surface detectors preprocessing). It learns to
control a Porsche 911 GT3 R on (Barcelona) Catalunya GP racetrack in the notorious high quality
racing simulation (sim-racing) title, Project Cars 2™.
This project aims to answer the following question: how to build a simulated racing track driver
that would learn to drive based on vision with the intuition of a racing line?
The underlying idea here, is that like racing driver that uses his/her senses (then skills) to perform,
the model should learn in the same context as a driver.

DDPG algorithm has been, then, used with an asymmetric actor-critic.

This publishing is focused on BOT88’s training phase.

Special thanks to the Quarante family, Khelil, Damien and my family for their unfailing support.

mailto:mhatchi@vrona.io
https://www.youtube.com/watch?v=1dPtgaEnzI4
https://www.youtube.com/channel/UCDThZNmxhmEOfp0sm7HtFvw
https://www.projectcarsgame.com/
https://www.vrona.io/

 2

I. Introduction

Motor sports, and especially racing car, are in permanent evolution.
In less than 5 years, a tipping point has come.
Indeed, each area of the sport has pushed its own boundaries due
to technologies advances and progressive change in mentalities:

▪ Powertrain: hybrid, full electric,
▪ Audience/Broadcast: Multi-screens, 5G, …
▪ Safety: real-time driver’s health data,
▪ Environment: real, virtual (Esport),
▪ Driver: human, machine (autonomous).

Development of real-world autonomous vehicle required an
important structure and infrastructure.
As training an agent is based on try and errors scheme. Up to a
certain level of generalization, real-world training cannot be
considered because of physical damage and collateral costs.

One solution is to develop autonomous racing car ‘agent’ within a
simulated racing environment.
This solution would nurture purposes like (non-exhaustive list):

▪ Additional support for autonomous racing track
championship which, as a reminder, represents a deep
interest for ‘mobility’ industry (automotive, aerospace,
defense, rescue).

▪ Simulation of race accident which helps to take into
consideration critical points upstream real driver races in
deterministic scenario.

Nowadays, very accurate replica of racing environments like1:
rFactor2 (developed by Image Space Incorporated and Studio 397)
or Project Cars 2™ (developed by Slightly Mad Studios) provides
real racetrack data, car states and motions data.

Technically, deep learning, reinforcement learning and the fusion of
these two have proven spectacular successes of learning and
solving complicated tasks. Google Deepmind team with AlphaGO
[3] on Go game and with another model on Atari 2600 games [4]
have shown the way.

By using Deep Reinforcement Learning, in 2018, a team of
researchers from INRIA, has made an impressive research - ‘end to
end race driving with deep reinforcement learning’ [2] - and
demonstrated the validity of using a high-quality video game at
training stage before using the agent control model into real self-
driving car experiments which produced great results.

Their agent had been trained on WRC6™ (World Rally
Championship - FIA) video game AAA title as this would provide
replicas of real-world roads (see about WRC2) with different
surfaces and weather conditions.
They employed an Asynchronous Advantage Actor Critic (A3C)
algorithm to learn lateral and longitudinal control from a virtual front
camera. And trained it on multiple game instances which run on
different machines.

Another team of researcher from Carnegie Mellon University has
published - Deep Reinforcement Learning for Autonomous Driving
[5] - in 2018, as well. They describe how their autonomous car agent
solved the problem of control within another simulated environment:
TORCS (The Open Racing Car Simulator) with full states inputs
(localization and motion data) and Deep Deterministic Policy
Gradient (DDPG) algorithm.
And finally, a third team released in a former robotics study -

Asymmetric Actor Critic for Image-Based Robot Learning [7] – an

1 These are consumer racing simulation. Gran Turismo, Assetto

Corsa are other titles.
2 https://www.wrc.com/en/wrc/about-wrc/what-is-wrc/page/673--

-672-.html

interesting deep reinforcement learning model where image and full
states are both used to solve robotic tasks.

Thus, in the same vein of these three research works, VRONA® BOT88

solves a reinforcement learning problem where it interacts with a

racetrack environment (state 𝑆, in the form of screen inputs), due to
actions (actions 𝑎 among: accelerating, turning left or right and

braking) and receives a reward (𝑟) from reward function made of
motion data.
The first two researches are using the middle of the track as a
guideline. The latter is using a goal localization where the robotic
arm should be set to succeed its task.
In our case, the racing line3 has been given to the agent as a goal
localization.

Because of the high-dimension environment and the action
continuous space at each state, BOT88 uses deep neural network
(deep learning) to map directly raw images input to control outputs.
The agent shown interesting progress with Deep Deterministic
Policy Gradient with asymmetric actor-critic at this stage (sec.
Method and [7]).

II. Background

A. Reinforcement Learning

As said previously, reinforcement learning (RL) is an agent which
needs to interact with its environment to learn and solves the
problem is dealing with.
In main features, RL is based on Markov Decision Process (MDP),
where the future is independent of the past given present.

𝑃(𝑆𝑡+1|𝑆𝑡) = 𝑃(𝑆𝑡+1|𝑆1, 𝑆2 , 𝑆3, … , 𝑆𝑡)

MDP is a tuple of five components (𝑆, 𝐴, 𝑃, 𝑅, 𝛾) where:

𝑆 → a set of states in the environment,

𝐴 → a finite set of actions (deterministic or in our case, continuous)
an agent can do in the environment,

𝑃 → the transition probability matrix (maps 𝑆 to 𝐴),

𝑅 → reward component from reward function for given (𝑆, 𝐴),
 → discount factor where 𝛾 𝜖 [0,1] which weights distant future 𝑅

to immediate future 𝑅.
By using MDP, the goal is to obtain the maximum expected

cumulative reward (𝐺𝑡) at timestep 𝑡 for a given state until the
ultimate state.

𝐺𝑡 = ∑ 𝑅𝑡+𝑚+1

∞

𝑚=0

Thus, in a stochastic context, during every episode an agent starts
at initial state 𝑆0 from 𝑆, makes an action 𝑎0 from 𝐴 due to an initial

transition probability 𝜋(𝑎|𝑆) = 𝑃(𝑎𝑡 = 𝑎, 𝑆𝑡 = 𝑆), observes the new

state S1 and get in return a reward 𝑟0 = 𝑟(𝑆0, 𝑎0) from 𝑅.

3 The ideal trajectory that deal with maintaining highest speed as

late as possible before touch the apex of a curve and retrieve high
speed as soon as possible when exiting this curve.

Fig. 1: BOT88 drives a Porsche 911 GT3 R from Project Cars 2™.

https://www.rfactor.net/
https://www.projectcarsgame.com/
https://www.inria.fr/en/
https://www.wrc.com/en/wrc/about-wrc/what-is-wrc/page/673---672-.html

 3

It pursues this mechanism at each timestep until the terminal state
(which ended an episode), which enable to obtain:

▪ the State-Value 𝑉(𝑠), computed due to value function

following policy 𝜋:
𝑉𝜋(𝑆) = 𝐸 [𝐺𝑡|𝑆𝑡 = 𝑆]

▪ the Action-Value 𝑄𝜋(𝑆,𝑎) computed due to action-value

function following policy 𝜋:

𝑄𝜋(𝑆,𝑎) = 𝐸𝜋 [𝐺𝑡 |𝑆𝑡 = 𝑆, 𝑎𝑡 = 𝑎]

The main goal is to find the optimal Policy 𝜋∗ when the policy
maximizes the expected reward for all state in 𝑆.

𝜋∗(𝑎|𝑆) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄𝜋(𝑆,𝑎)

B. Deep Learning (DL)

DL acts like features extractor from high-dimensional data where the
input data are vectorized and nurtures non-linear activation
functions which output next inputs of layer of activation function and
so forth.
The multi-layer tends to minimize a given loss function on a training
set (or a designed reference marker) using backpropagation which
then, updates the weights of the network.
In BOT88 case, DL is used to extracted features from image inputs

(straight or curved lines, texture, …) due to CNN structure (see.
below) and to approximate policy function (see. C. DDPG) and
action-value function from low dimension inputs (car motion data
and network weights).

o Convolution neural network (CNN).
RGB image inputs (like here from sim-racing environment) have 3
dimensions: width, height and depth which are high-dimension data.
CNN is a type of neural network intrinsically made upon the said 3D
shape data.
The asset of such structure is to extract sum of convolution from
precise region from the sliding of a filter window over the input data.
These are then stored in a feature map.
CNN uses pooling layer, as well, right after convolution layer in order
to reduce the dimensionality as convolution layer tend to enlarge it
(because of filters). Max pooling layer enables to reduce the size but
helps to keep the relevant data.

CNN, obviously, allows to work on large dimension inputs with less
training time compared to a multi-layer perceptron (MLP). MLP
would request much more nodes and layers to achieve the same
task.

o Deep Reinforcement Learning

Deep 𝑄 network (DQN) is a well-known deep reinforcement learning
algorithm that performs in discrete action space. It performs then in
few actions’ possibilities context as its deep network approximates
the action-value function (𝑄𝜋(𝑆,𝑎)) at each state based on the action

that has the maximum value. In other words, it combines the

mechanism of RL to find the optimal policy π∗ (due to optimal 𝑄∗)
with DL capacities to deal with non-linear environments. Deep RL
bridges the gap between machine and human capacities.
DQN follows two methods:

▪ model-free: transition probability 𝑆 to 𝑆′ is initially
unknown,

▪ off-policy: one policy is evaluated ‘Target Policy’, another
‘Behavioral Policy’ is followed for exploration.

C. Deep Deterministic Policy Gradient (DDPG) algorithm

Autonomous racing car, and then obviously day to day car, evolves
in continuous spaces.
Indeed, starting from 0 velocity accompanied with extreme
acceleration up to high velocity with immediate steering reaction
(with continuous angle possibilities) until a strong brake4 before a
curve represent to deal with continuous action spaces while piloting
precisely.

4 in order to transfer the mass of the racing car onto its front

wheels to maximize grip and to reach the highest possible speed.

Thus, to learn and behave in a racetrack environment, the racing
car agent needs a RL algorithm with characteristics that can handle
the mandatory continuous action spaces.

DDPG and DQN have in common to look for 𝑄∗(𝑠, 𝑎) which helps to

find optimal action given state 𝑎∗(𝑠). But in a continuous action
space which is wide, it would be untenable. Thus, a gradient-based
learning rule for a policy 𝑎 = 𝜇(𝑠) is key as instead of 𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎)

(see. DQN) in DDPG we approximate it: 𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎) ≈ 𝑄(𝑠, 𝜇(𝑠)).

DDPG integrates an Actor-Critic architecture.
The Actor tends to find the optimal parameters for a policy function

approximator which maps 𝑆 𝑡𝑜 𝐴. And Critic evaluates the function
policy by approximating action-value function like DQN does.

Actor learns a deterministic policy 𝜇𝜃(𝑆) and needs a gradient
ascent from Critic (with policy parameters only) which solves:

max
𝜃

𝐸𝑠~𝐷 [𝑄𝜃(𝑠, 𝜇𝜃(𝑠))]

𝐷: set of transition (𝑆, 𝑎, 𝑟, 𝑆𝑡+1,, 𝑑) where 𝑑 indicates whether 𝑆𝑡+1 is

terminal.
Both, DQN and DDPG, use experience replay buffer fulfill of 𝐷 (as
a cache of finite size to avoid dependence between exploration)
from which they learn.

DDPG algorithm involves four neural networks:

▪ Actor network: Deterministic policy function with weights
𝜃𝜇, maps the states to actions (acceleration, left, right,
brake) instead of outputting the probability distribution
across a discrete action space.

It provides the agent’s current policy 𝜇(𝑠|𝜃𝜇) for the Q
function (aka action-value function).

▪ Critic network: 𝑄 network with weights 𝜃𝑄, approximates
the action-value function 𝑄(𝑠, 𝑎|𝜃𝑄).

▪ target policy network 𝜃𝜇′
and target Q network 𝜃𝑄′

are
respectively copies of Actor and Critic networks. But have

different network weights θ’ and are time delayed in order

to slowly track the learned networks 𝜃′ = 𝜏𝜃 + (1 − 𝜏)𝜃′.

𝜏, is an hyperparameter that decays the learning rate linearly and

which constrains the target values with a slow updating speed. This
enhance stability while learning.

Note that to enable DDPG policy explore better, noise is added to
action. But still, it is the deterministic target policy which is
evaluated.

Fig. 2: basic Actor-Critic flow where Critic evaluates the new state due to TD

error (Temporal-Difference).

III. Method

Before going further through the method applied in this project,
several challenges have been raised. Many trials dealing with these
obstacles and part of the method explained in ‘Asymmetric Actor

 4

Critic for Image-Based Robot Learning’ [7] have led to the method
used in this project.

o Racing line
Basically, a racing driver follows a racing line which maximizes the
overall pace on racetrack. It implies for some sequences of turns to
‘sacrifice’ the 1st curve by avoiding its apex in order to keep high
speed when heading into the 2nd curve and to reach the highest
speed at the exit as soon as possible.

Fig. 3: examples of racing line conditioned to the number of curves and

apexes (source: kartworldbelmont.com.au)

In terms of vision, this makes mapping input to action (output) more
complex.
Case: suppose at turn 1 the racing line is on the left side of
racetrack, at turn 2 on the right side, at turn 3 in the middle of the
track to finally be on left side at turn 4. Without racing line, the
context would be simpler: always in the middle of the racetrack.
Moreover, if you take into consideration the changing context off-
track: grass, wall, deceleration surface, gravel, curbs presence or
not, this does not help the agent model to generalize rapidly.

 Racing Line True Racing Line False

Fig. 4: vision rendering of True / False racing line positioning.

Thus, to bring more contextualization information, identical
state_vision input to DDPG’s Actor-Critic networks is avoided.
Instead, Asymmetric Actor-Critic is used as Actor network waits
state_vision input and Critic network waits for state_motion input [7].

o Motion data

The chosen sim-racing API does not indicate localization of racing
car within a racetrack Euclidean plan (simulated world Euclidean
plan instead), nor distance from racetrack’s edges or angle between
racing car orientation and racetrack orientation.

This has led to consider Racing Line as a Goal that agent needs to
tend to every meter of the racetrack. Then, it is used as input to
Critic network and finally stored in the replay buffer [1][7] alongside
state_vision, state_motion, action, reward, next_state_vision,
next_state_motion.

o DDPG asymmetric Actor-Critic

Fig. 5: asymmetric Actor-Critic mechanism in Bot88 case.

Algorithm DDPG from [1] with asymmetric actor-critic [7]

Randomly initialize critic network 𝑄(𝑆𝑚, 𝐺, 𝑎|𝜃𝑄) and actor 𝜇(𝑆𝑣|𝜃𝜇) with weights 𝜃𝑄

and 𝜃𝜇.

Initialize target network 𝑄′
 and 𝜇′

 with weights 𝜃𝑄′
← 𝜃𝑄, 𝜃𝜇′

← 𝜃𝜇

Initialize replay buffer 𝑅

for episode = 1, M do

Initialize a random process 𝒩 for action exploration

Receive initial observation state_vision 𝑆𝑣1, state_motion 𝑆𝑚1and goal (racing line) 𝐺1

for t = 1, T do

Select action 𝑎𝑡 = 𝜇(𝑆𝑣𝑡|𝜃𝜇) + 𝒩𝑡 according to the current policy and

exploration noise

Execute action 𝑎𝑡 , observe reward 𝑟𝑡 , new_state_vision 𝑆𝑣𝑡+1, new_state_motion

𝑆𝑚𝑡+1, new_goal 𝐺𝑡+1

Store transition (𝑆𝑣𝑡, 𝑆𝑚𝑡, 𝐺𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑆𝑣𝑡+1, 𝑆𝑚𝑡+1, 𝐺𝑡+1) in R

Sample random minibatch of 𝑁 transitions (𝑆𝑣𝑖 , 𝑆𝑚𝑖 , 𝐺𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑆𝑣𝑖 ,
𝑆𝑚𝑖+1, 𝐺𝑖+1) from R

Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′(𝑆𝑚𝑖+1, 𝐺𝑖+1, 𝜇′(𝑆𝑣𝑖+1|𝜃𝜇′
) | 𝜃𝑄′)

Update critic by minimizing the loss: 𝐿 =
1

𝑁
 ∑ (𝑦𝑖 − 𝑄(𝑆𝑚𝑖 , 𝐺𝑖 , 𝑎𝑖𝑖 | 𝜃𝑄))2

Update the actor policy using the sampled policy gradient:

∇𝜃𝜇𝐽 ≈
1

𝑁
∑ ∇𝑎

𝑖

𝑄(𝑆𝑚, 𝐺, 𝑎|𝜃𝑄)|𝑆𝑚=𝑆𝑚𝑖, 𝐺=𝐺𝑖 , 𝑎=𝜇(𝑆𝑣𝑖)∇𝜃𝜇𝜇(𝑆𝑣|𝜃𝜇)|𝑆𝑣𝑖

Update the target networks:

𝜃𝑄′
← 𝜏𝜃𝑄 + (1 − 𝜏) 𝜃𝑄′

𝜃𝜇′
← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

end for

end for

Pseudocode 1: DDPG with asymmetric actor-critic adapted to Bot88.

Recall from Background C. that DDPG follows Off-Policy method:

▪ Actor network with (𝑆𝑣𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑆𝑣𝑡+1) learns a
deterministic policy 𝜇(𝑆𝑣|𝜃𝜇) which followed a stochastic
policy for good exploration only (behavioral policy),

▪ Critic network with (𝑆𝑚𝑡 , 𝐺𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑆𝑚𝑡+1, 𝐺𝑡+1) evaluates
the deterministic target policy.

Basically, the mechanism is:
Raw RGB vision input of (635, 800, 3) shape is processed to be
resized and outputted into (89, 120, 3) shape with a black mask on
top third part of the image. This reduce irrelevant data.
In parallel, motion input of (15,) shape is retrieved from simulated
environment’s API and goal (racing line) input of (3,) shape is
available from a preprocessed dataset which matches with racing
car motion in real-time.

At each timestep 𝑡 of each episode, DDPG algorithm receives
state_vision 𝑆𝑣𝑡 of (89, 120, 3) shape via Actor. Predicts action 𝑎𝑡

which is added to noise 𝒩𝑡 from Ornstein-Uhlenbeck process.
It observes 𝑟𝑡 , 𝑆𝑣𝑡+1, 𝑆𝑚𝑡+1, 𝐺𝑡+1 and stores (𝑆𝑣𝑡 , 𝑆𝑚𝑡 , 𝐺𝑡 , 𝑎𝑡 , 𝑟𝑡 ,
𝑆𝑣𝑡+1, 𝑆𝑚𝑡+1, 𝐺𝑡+1) in replay buffer 𝑅.
Critic estimates the deterministic policy due to state_motion 𝑆𝑚𝑡,

goal 𝐺𝑡 and action 𝑎𝑡.
Once full, a sample from 𝑅 is used to enable Critic to learn which
provides the action that maximizes action-value (performs gradient
ascent) to Actor which learns.

 5

IV. Implementation

As numerous motor sports companies test their innovations on its
route, the chosen racetrack for experiments is: (Barcelona)
Catalunya GP.

Combining accurate racetrack data, advanced replica racetrack
rendering and relevant telemetry data, all developments have been
made on sim-racing license Project Cars 2™.

Fig. 6: materialization of the dedicated architecture and flow of this project.

A. Data

Nature Name Data Type - Units Utilization Origin

Vision
input

(Actor)
-

(800, 635, 3)
resized to

(89, 120, 3)

State
actor

Real-time
processing

Data

Motion
input
(Critic)

Goal = racing_line World Space X Z Y State critic
Preprocessing
data manual

driving

mWorldPosition World Space X Z Y State critic

PCars2 API
with python

client

mOrientation
Pitch, Yaw, Roll
(Euler angles)

State critic

mLocalVelocity
X Z Y

(-inf, inf)
Metres per-second

State critic
and

Reward

mAngularVelocity
Pitch, Yaw, Roll

(radians / s)
State critic

mLocalAcceleration
X Z Y

(-inf, inf)
Metres per-second

State critic

Other

mCrashState

Status
0 None;

1 Off-track;
2 Large prop;
3 Spinning;
4 Rolling.

Nextstep
function

+
Monitoring

mCurrentLapDistance
(0, TrackLength)

meters
Monitoring

mOdometerKM (0, inf) meters Monitoring

racing_line_delta
|racing_line –

mWorldPosition|

Nextstep
function

+
Reward

Real-time
processing

Data

Table 1 - Overall data (NB: PCars 2’s 3D Euclidean axes order is X Z Y)

While sim-racing instance runs, the gameplay displayed on screen

is captured in real-time due to Python script.

In parallel, telemetry data are delivered from Project Cars 2 API

(C++) via shared memory. A dedicated python client helps to

retrieve these motion data and other monitoring data.

Racing line coordinates have been gathered after manual driving

and data have been preprocessed in order to create a real-time

matching guideline to BOT88 wherever it is located on the racetrack.

Fig. 7: 3D plot of ideal Racing Line coordinates retrieved from upstream
manual driving. Data used later on to provide goal to Critic network and

compute delta distance (between bot88 and goal) for NextStep function and

Reward function.

B. Devices

One instance of Project Cars 2™ license has been installed on one
Microsoft Azure Virtual Machine which has 6 cores CPU, 56GB
memory and one Nvidia Tesla M60 GPU managed with Windows
Server 2016 Datacenter OS.

C. Controller

BOT88 uses PC keyboard command to control the racing car. A

dedicated script enables the agent to PressKey or ReleaseKey on
the following keys: [↑ , ← , → , ↓]
which correspond to: [accelerating, left, right, braking]

Concretely, BOT88 agent outputs one vector of 4 elements.

[Acceleration, Turn-left, Turn-right, Brake] where they value are all
contain between 0.1 second (almost no action) to 1.5 seconds (of
action). This particularity is from the fact that time sleep function is
a component PressKey and ReleaseKey functions.

D. Network

o Actor
Is a composion of CNN network of 4 layers which embed 2 Conv
layers with filters=64, kernel_size =2, strides= 1 and 2 Conv layers
with filters=32, kernel_size =2, strides= 1 (with one bottleneck on
the 3rd layer), all with relu activation function, MaxPooling and
BatchNormalisation.

And 3 Dense layers: 150, 300, 300, all with relu activation function
and BatchNormalisation.

It outputs (action) a concatenation of 4 unique Dense where
accelerating and braking are computed with relu activation function
and turn-left, turn-right are computed with ‘tanh’ with a kernel

initializer=Variance Scaling of scale 1−2.

o Critic
Is composed of three pathways: state motion, Goal (racing line) and
action. They all have the same structure: 3 Dense layers: 150, 300,
300, all with relu activation function and BatchNormalisation.
They are merged to nurture a 600 Dense layer which nurture a last
Q_value Dense layer.

o Reward function

Is as simple as: 𝑟(𝑆𝑡, 𝑎𝑡) = 𝑉 − 𝛼 ∗ |𝑟𝑎𝑐𝑖𝑛𝑔 𝑙𝑖𝑛𝑒Δ|
Or an alternative:

𝑟(𝑆𝑡 , 𝑎𝑡) = 𝑉 − 𝛼 ∗ |𝑟𝑎𝑐𝑖𝑛𝑔 𝑙𝑖𝑛𝑒Δ| − 𝛽 ∗ 𝑐𝑟𝑎𝑠ℎ𝑆𝑡𝑎𝑡𝑒

https://www.circuitcat.com/en/
https://www.circuitcat.com/en/
https://www.projectcarsgame.com/

 6

𝑉 is the forward velocity, |𝑟𝑎𝑐𝑖𝑛𝑔 𝑙𝑖𝑛𝑒Δ| is the absolute value of

distance between BOT88 position and racing line (goal) position and

𝑐𝑟𝑎𝑠ℎ𝑆𝑡𝑎𝑡𝑒 is the crash state (1 for Off-road, 3 for spinning, …).

V. Results & Discussion

Due to trials and the hyperparameters settings (below), the average
reward evolved in a promising way. It has been monitored, along 3
laps of 4655 kms each.

Table 2 - DDPG’s (asymmetric A-C) hyperparameters

These results were obtained with around 300 episodes which is very
little and represents +1 hour of training.

We can notice that at every beginning and ending of the lap, the
avg. reward is higher as the start/finish line is located in the middle
of a long straight. This peak happens during another straight, as
well.

During Lap 1 (blue), the agent acts pretty agilely but then the replay
buffering and sample extractions runs intensively with all the
computation underlying which slows down the action’s execution. It
creates a lag between two execution of Turn-Left and Turn-Right.
The immediate impact is that the pace of the racing car is drastically
reduced, and it tends to crash more often.

During Lap 2 (orange), the agent learns at slow pace and finally Lap
3 it converges a little bit more. One supposition is that after hours of
training and exploration the policy converges slowly but surely.

Long short-term memory (LSTM) network has been tested as it
makes sense to use memory to predict next state and next actions.
But huge lags have been observed when training and the agent did
not converge at all.

Advantage Actor-Critic (A2C) and Asynchronous Advantage Actor-
Critic (A3C) would handle the LSTM with more comfort as they don’t
use replay buffer. They are algorithms which are probably more
indicate to tackle this end to end control challenge on an external
sim-racing environment with a ‘restricted’ hardware architecture.

Fig. 8: Average reward over 3 laps in a row.

VI. Conclusion

End to end control is a hard challenge more over when focusing on
raw pixel input only and trying to stick to a racing line trajectory.
Lateral control is the more complex task to handle, this is where
LSTM could help in addition to a more specific work on vision input.

A more agile execution of action is key.
DDPG algorithm works perfectly and rapidly with TORCS
environment and its dedicated data but within a context with more
uncertainty and limited hardware architecture, it is more favourable
to choose a different variant of Actor-Critic algorithm.
On the other hand, Multi-Agent DDPG can handle the task.

References

1 Continuous_control_with_deep_reinforcement_learning
Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, Daan Wierstra
https://arxiv.org/abs/1509.02971

2 End-to-End Race Driving with Deep Reinforcement Learning –
INRIA
Maximilian Jaritz, Raoul de Charette, Marin Toromanoff, Etienne Perot

and

Fawzi Nashashibi

https://team.inria.fr/rits/files/2018/02/ICRA18_EndToEndDriving_CameraRe
ady.pdf

3 Mastering the game of go with deep neural networks
D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot
https://www.researchgate.net/publication/292074166_Mastering_the_game
_of_Go_with_deep_neural_networks_and_tree_search

4 Playing Atari With Deep Reinforcement
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller.
https://arxiv.org/pdf/1312.5602.pdf

5 Deep Reinforcement Learning for Autonomous Driving
SenWang, Daoyuan Jia, Xinshuo Weng

https://arxiv.org/abs/1811.11329

6 Vision-based Deep Reinforcement Learning
Anirudh Vemula, Debidatta Dwibedi
https://pdfs.semanticscholar.org/23cc/423a4c3c69b9470aac4f401f6225441
a6e6d.pdf

7 Asymmetric Actor Critic for Image-Based Robot Learning
Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba,
Pieter Abbeel
https://arxiv.org/abs/1710.06542

Algorithm Hyperparameters
Actor network Adam optimizer learning rate 0.001
Critic network Adam optimizer learning rate 0.0001

target policy &

target Q function
Tau

discount factor

0.01

0.98

Noise
(Ornstein-Uhlenbeck)

mu

theta

sigma

0
0.8

0.3

Replay buffer (memory
Size
batch

100000
32

https://arxiv.org/search/cs?searchtype=author&query=Lillicrap%2C+T+P
https://arxiv.org/search/cs?searchtype=author&query=Hunt%2C+J+J
https://arxiv.org/search/cs?searchtype=author&query=Pritzel%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Heess%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Heess%2C+N
https://arxiv.org/search/cs?searchtype=author&query=Erez%2C+T
https://arxiv.org/search/cs?searchtype=author&query=Tassa%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Silver%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Wierstra%2C+D
https://arxiv.org/abs/1509.02971
https://arxiv.org/pdf/1312.5602.pdf
https://pdfs.semanticscholar.org/23cc/423a4c3c69b9470aac4f401f6225441a6e6d.pdf
https://pdfs.semanticscholar.org/23cc/423a4c3c69b9470aac4f401f6225441a6e6d.pdf
https://arxiv.org/abs/1710.06542

 7

	Deep Reinforcement Learning for Autonomous Racing Track Agent (Project Cars 2™)
	initial release: 01/08/2020 - update: 02/01/2020
	I. Introduction

